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Background The Multiline Ring Anchor (MRA) ~ Concluding Comments
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» Nevertheless, the high capital cost of the multiline potential may tend to offset its
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gﬁiciency can be instructive (Fig.4). I T > The MRA load capacity parity can be
Soil condition » Atypical soft clay (e.g Gulf of Mexico, [3]): s(z)=5+2kPa/m*z achieved by increasing D or W, of wings.
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